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NUMERICAL MODELING OF THE THERMOMECHANICAL BEHAVIOR

OF STEELS WITH ALLOWANCE FOR THE PROPAGATION OF LUDERS BANDS

UDC 531.3R. R. Balokhonov1,2 and V. A. Romanova1,2

A thermomechanical model based on physical representations of the motion of dislocation continuum
and a model for the initiation and propagation of plastic shear are proposed to describe slow flows of
the type of Luders bands. Two-dimensional calculations of Luders band propagation are performed
for HSLA-65 steel samples under compression at various strain rates and temperatures. The calcu-
lation results are in good agreement with experimental data.

Key words: numerical modeling, Luders bands, relaxation constitutive equation, rate and tem-
perature sensitivity.

Introduction. Constructing physicomechanical models of homogeneous deformation that describe the
mechanical behavior of metals and alloys at various rates and temperatures is an important problem of modern
mechanics. From a physical point of view, it is also necessary to develop approaches to modeling inhomogeneous
flows. Substantially inhomogeneous deformation is exemplified by the propagation of Chernov–Luders localized
plastic deformation bands. In experiments, a Luders band is usually observed as a macroscopic zone of localized
plastic deformation, which forms near the base macroscopic stress concentrator (as a rule, near the tensile grip) and
propagates throughout the sample at a rate characteristic of the particular grade of steel.

The goal of the work is to construct a combined model for the mechanical behavior of metals that includes
a relaxation equation taking into account the rate and temperature sensitivity and describes the initiation and
propagation of localized plastic deformation bands.

General System of Equations and Initial and Boundary Conditions. To describe material deforma-
tion, we use the system of equations including the laws of conservation of mass and momentum, strain relations, and
the constitutive equations describing the material. The mechanical behavior of the examined steel grade is modeled
for a plane strain state. A numerical solution is constructed in Lagrangian variables using a finite difference method
[1, 2].

In the case of plane strain, the following strain rate tensor components are nonzero:

ε̇11 = u̇1,1, ε̇22 = u̇2,2, ε̇12 = (u̇1,2 + u̇2,1)/2

(u1 and u2 are the displacement vector components; the dot denotes the derivative with respect to time, and the
comma in the subscript denotes the derivative with respect to the coordinate).

The laws of conservation of momentum are written as

σ11,1 + σ21,2 = ρü1, σ12,1 + σ22,2 = ρü2.

The continuity equation implies

V̇ /V = ε̇11 + ε̇22.

Here σij are the stress tensor components, V is the specific volume, and ρ is the density.
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Fig. 1. Computation region (4 × 1 cm) and initial and boundary conditions.

Taking into account the decomposition of the stress tensor into the spherical and deviator components:
σij = −Pδij + Sij , the decomposition of the total strain rates tensor into the elastic and plastic components:
ε̇ij = ε̇e

ij + ε̇p
ij , and the plastic incompressibility hypotheses (ε̇p

kk = 0), we write the pressure and stress tensor
deviator components as

Ṗ = −Kε̇kk,

Ṡ11 = 2μ
(
ε̇11 − 1

3
V̇

V
− ε̇p

11

)
, Ṡ22 = 2μ

(
ε̇22 − 1

3
V̇

V
− ε̇p

22

)
, (1)

Ṡ12 = 2μ(ε̇12 − ε̇p
12), Ṡ33 = −(Ṡ11 + Ṡ22).

Here K and μ are the bulk compression and shear moduli and δij is the Kronecker symbol; the summation is
performed over repeated indices.

Let us consider the region D(x, t) with the boundary Γ(x, t) = Γ1∪Γ2∪Γ3∪Γ4, where x is the radius-vector
and t is time (Fig. 1). For t = 0, the initial conditions for any x ∈ D(x, 0) are given by

u̇i(x) = 0, σij(x) = 0, ρ(x) = ρ0(x) (i, j = 1, 2),

where ρ0 is the initial density.
The rates on the part of the surface Γ1∪Γ3∪Γ4 and the stress on Γ2 (Fig. 1) were specified as the boundary

conditions. Uniaxial compression of the sample in the x direction is modeled on the left and right surfaces, and
symmetry and free-surface conditions are modeled on the lower and upper surfaces, respectively:

for t � 0, x ∈ Γ1, u̇1(x, t) = const = −v;

for t � 0, x ∈ Γ3, u̇1(x, t) = const = v;

for t � 0, x ∈ Γ2, σij(x, t) · nj = 0;

for t � 0, x ∈ Γ4, u̇2(x, t) = 0;

for t � 0, x ∈ Γ1 ∪ Γ3 ∪ Γ4, σ12(x, t) = 0.

Here v is the displacement rate (v > 0 for external extension and v < 0 for external compression) and nj is the
normal to the surface Γ2.

Relaxation Constitutive Equation. Using the flow law ε̇p
ij = λ̇Sij , which is related to the plasticity

condition f(σi, σ0) = 0, where f is the yield surface, σ0 is the elastic limit, λ is the scalar multiplier identically
equal to zero in the elastic region, we express the plastic shear rate tensor components in the following form [3]

ε̇p
ij =

3
2

ε̇p
i

σi
Sij . (2)

Here σi and ε̇p
i are the stress intensities and plastic strain rates:

σi = (1/
√

2 )
√

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2
12 + σ2

23 + σ2
13),

ε̇p
i = (

√
2/3)

√
(ε̇p

11 − ε̇p
22)2 + (ε̇p

22 − ε̇p
33)2 + (ε̇p

33 − ε̇p
11)2 + 6(ε̇p2

12 + ε̇p2
23 + ε̇p2

13).
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Fig. 2. Experimental stress–strain relations (points) and those calculated using model (4) (curves) for HSLA-65
steel [7] at ε̇ = 0.1 (a) and 3000 sec−1 (b); T0 = 77 (1), 213 (2), 296 (3), 400 (4), 500 (5), and 700 K (6).

In view of (2), the constitutive relations (1) become

Ṡij = 2μ
(
ε̇ij − 1

3
V̇

V
δij − 3

2
ε̇p
i

σi
Sij

)
. (3)

To close the system of equations, it is necessary to define the quantity ε̇p
i as a function of εp

i and σi.
Thermomechanical Model. To describe the response of the material over a wide range of temperatures

(T0 = 77–600) and strain rates (ε̇ = 0.1–8000 sec−1), we use the assumption of a dislocation nature of the plastic
flow. The kinetic relations based on dislocation motion are widely used to describe the plastic strain rate [4–10].
Some theoretical assumptions on the examined problem are given in [7]. The essence of the model proposed by
Nemat-Nasser and Guo [7] for the mechanical behavior of HSLA-65 steel under uniaxial compression to strain
ε > 0.6 consists of constructing an approximating stress–strain curve with the temperature and rate sensitivity of
the material taken into account.

Following [7], we denote the plastic strain rate and the stress in the one-dimensional case by γ̇p and τ(γp),
respectively. The quantity γ̇p in [7] is used as a parameter whose variation allows to construct flow curves for
various loading rates. The current stress τ is decomposed into the thermally activated component τT , which is due
to long-range effects and does not depend on temperature, and the component τa due to the presence of short-range
barriers preventing dislocation motion. The quantity τa does not depend on γ̇p and can depend on dislocation
density, grain size, the formation of substructures, etc. For the specified steel grade, Nemat-Nasser and Guo [7]
employed the power law τa(γp). Using the expression for the energy ΔG required to overcome the barriers by means
of thermal activation:

ΔG = G0[1 − (τT /τ̃)d]q

and the relation [7]
γ̇p = γ̇r exp (−ΔG/(kT )),

we obtain

τ = τa + τT = τ1(γp)n + τ̃
[
1 −

(
− kT

G0
ln

γ̇p

γ̇r

)1/q]1/d

, (4)

where τ1 = 760 MPa, n = 0.15, τ̃ = 1450 MPa is the stress at which dislocations overcome the barrier without
thermal activation, G0 = 0.8 eV ≈ 1.28 ·10−19 J is the energy sufficient to overcome the barrier only due to thermal
activation, T is the temperature, q = 2 and d = 2/3 for many metals [7], k is Boltzmann’s constant, and γ̇r is a
constant proportional to the density of mobile dislocations.

The flow curves τ(γp, γ̇p, T ) calculated in [7] over a wide range of strain rates and temperature are in good
agreement with experimental data for strains ε = 0.1–0.6 (Fig. 2). However, for ε < 0.1 the calculation error
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Fig. 3. Volume averaged stresses versus strains for HSLA-65 steel [calculations using model (5) ignoring Luders band
propagation]: (a) for ε̇ = 3000 sec−1, T0 = 77 (1), 213 (2), 296 (3), 400 (4), 500 (5), and 600 K (6); (b) for T0 = 296 K,
0.1 (1), = 1 (2), 10 (3), 100 (4), 1000 (5), 3000 (6), and 8000 (7); curve 7′ refers to the value ε̇ = 8000 sec−1 calculated
using the model of [7] without introducing the fraction of mobile dislocations.

increases considerably, i.e., formula (4) leads to overestimated stresses and incorrectly describes the flow curve
(Fig. 2). This can be due to the fact that the quantity γ̇r = 4 · 108 sec−1, which is proportional to the density of
mobile dislocations Nm, is a constant in the model of [7], although Nm is known to vary in the initial stages of
deformation. In addition, the experimental flow curve are characterized by the presence of the upper and lower yield
limits (Fig. 2) and an yield plateau. In the case of steels, this indicates, as a rule, the initiation and propagation of
Chernov–Luders localized plastic deformation bands in the initial flow stages.

For the problems considered here, it is necessary, using formulas (4), to construct the inverse relation
γ̇p(γp, τ, T ) ∼ ε̇p

i (ε
p
i , σi, T ).

To take into account the evolution of the dislocation continuum, we introduce the fraction of mobile disloca-
tions F (εp

i ) = F ∗+(1−F ∗) exp(−Bεp
i /(|g|b)) [11, 12], so that the equality γ̇r = γ̇∗

r F ∗ is satisfied. Here |g| = 0.5 is the
orientation multiplier, b � 3.3 Å is the modulus of the Burgers vector, and B = 2/(d0N

0) and F ∗ = N0d0/(N∗dc)
are constants which can estimated using the physical concepts of the free path length of dislocations before the
moments of their attachment at impurities [13], for example, near grain boundaries. For the examined steel grade,
N∗ = 1012 cm−2 and N0 = 109 cm−2 are the limiting and initial dislocation densities, d0 = 15 μm [7] is the average
grain size, and dc = 1 μm [12, 13] is the average diameter of the dislocation cells formed during the deformation.

Expressing γ̇p from (4), replacing γ̇r by γ̇∗
r F (εp

i ), and taking into account that, for multidimensional flows,
τ = σi and γ̇p = ε̇p

i [7], we obtain

ε̇p
i = γ̇∗

r F (εp
i ) exp

{
− G0

kT

[
1 −

(σi − τa(εp
i )

τ̃

)d]q}
. (5)

Here

T = T0 +

εp
i∫

0

β

ρ0CV
σi dεp

i ;

T0 is the initial temperature, β � 1 (see, e.g., [7]), ρ0 = 7.8 g/sm3 is the density, and CV = 0.5 J/(g ·K) is the
specific heat. To differentiate between elastic and plastic strains in two-dimensional modeling, instead of the power
law [7] for τa [see (4)] we used the function τa(εp

i ) = 713 − 291 exp (εp
i /0.218 42), where τa(0) = σ0; the quantity

τa is in megapascals.
Figure 3 gives integrated flow curves for various temperatures and strain rates obtained in two-dimensional

calculations using the modified relation (5) [ε = (L − L0)/L0, where L0 and L are the initial and flow lengths of
the computation region]. The stress was calculated as the stress intensity averaged over the region D(x, t):
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Fig. 4. Initial portions of calculated flow curves for HSLA-65 steel taking into account relation (6):
(a) for ε̇ = 3000 sec−1, T0 = 77 (1), 213 (2), 296 (3), 400 (4), 500 (5), and 600 K (6); the region
between the dashed curves is the region of initiation and propagation of a Luders band); (b) for
T0 = 296 K, ε̇ = 0.1 (1), 1 (2), 10 (3), 100 (4), 1000 (5); 3000 (6), and 8000 sec−1 (7); curve 5′ refer to
the value ε̇ = 1000 sec−1 calculated ignoring inhomogeneous deformation.

〈σ〉 =
∑

k=1,N

σk
i sk

/ ∑
k=1,N

sk,

where N is the number of cells in the computation grid and sk is the local volume. The strain corresponds to the
relative strain of the computation region along the x1 axis.

For comparison, the dashed curve in Fig. 3 (T0 = 296 K and ε̇ = 8000 sec−1) shows the dependence 〈σ〉(ε)
obtained in a series of test two-dimensional calculations for various strain rates and temperatures using the original
model of [7] without introducing the fraction of mobile dislocations [in this case, instead of γ̇∗

r F (εp
i ) in (5) the

constant γ̇r is used]. The given averaged curve and all curves for the other rates and temperatures coincide with
the corresponding curves obtained in [7] using formula (4). A comparison of the calculation results of the present
work (see Fig. 3) with the calculation and experimental results of [7] (see Fig. 2) leads to the conclusion that the
modified relation (5) yields smaller strain resistance for ε � 0.10–0.15. Thus, this relation provides a more accurate
description of experimental curves for small strains.

Luders Band Propagation. The models given above are suitable for the description of the mechanical
behavior of metals and alloys in the cases where isotropic and homogeneous deformation up to failure occurs
exclusively by the motion of uniformly distributed defects (dislocations) and formation of substructures. However,
this formulation of continual mechanics does not allow one, without additional assumptions, to describe slow flows
such as the initiation and propagation of localized plastic deformation bands.

To model the development of inhomogeneous deformation, we use an approach combining methods of con-
tinual mechanics and discrete cellular automata [14]. This approach is based on experimental data indicating that
plastic strain initially arises at interfaces of an inhomogeneous material. The classical force criterion of transition
from an elastic state to a plastic state in any local internal region is supplemented by the necessary condition of
the presence of plastic flow, at least, in one of the adjacent regions:

εp
i = ε∗. (6)

Here ε∗ is the threshold plastic-strain intensity at which plastic flow can arise in a neighboring local region. The
value of ε∗ is to be determined experimentally by measuring local plastic strains directly behind the Luders band
front or it is to be chosen during numerical modeling so that the values of the upper and lower yield limits and the
extent of the yield plateau on the flow curves correspond to those observed experimentally.

In [15], condition (6) is combined with the relaxation constitutive equation without introducing the temper-
ature explicitly. Numerical modeling of Luders band propagation in 20MnMoNi55 steel was performed for various
strain rates.
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(a) calculation results (A–E are the material states corresponding to the points A–E in Fig. 4b);
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Fig. 6. Distribution of the stress intensity for the propagation of the Luders band front at the
moment of compression corresponding to the point A in Fig. 4b: 1) plastic flow zone; 2) Luders
band front; 3) elastic region.
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In the present work, we employed a model in which criterion (6) is used together with the relaxation
constitutive equation (3), which includes the plastic shear rate in the form of (5). Numerical modeling of Luders band
propagation was performed over a wide range of strain rates and temperatures. Figure 4 gives the initial portions
of the flow curves with allowance for Luders band propagation. The parameter ε∗ = 0.0008. For comparison, the
dashed curve in Fig. 4b (T0 = 296 K and ε̇ = 1000 sec−1) shows the initial portion of the curve calculated ignoring
inhomogeneous deformation (see Fig. 3b). It is evident that the combined formulation provides a more accurate
description of the experimental stress–strain relations for HSLA-65 steel [7] (see Fig. 2).

The plastic flow zone arises near the tensile grip (on the boundary of the computation region), and as the
values of εp

i in the sample increase according to law (5), the perturbation propagates in the form of a localized
plastic deformation front (Fig. 5). Plastic strain is accumulated behind the front, and elastic strain ahead of the
front. Similar behavior was observed in experiments. Figure 5b shows Luders band propagation in a steel plate
hardened by electron beam surfacing [16]. The plastic strain front propagates along the side face of the sample
tested. In this case, the material ahead of the front is not deformed and the strain is concentrated at the moving
Luders band front. This process leads to the occurrence of the upper and lower yield limits on the “macroscopic”
flow curve and a zone of slow variation in the current resistance to deformation — an yield plateau (see Fig. 4).

Figure 6 shows the stress distribution at the moment corresponding to the conditions at the point A in
the loading diagram (see Fig. 4). In the initial stages of Luders band propagation, the volume involved in plastic
deformation is not sufficient for the total stress relaxation in the elastic region ahead of the front: here the stress
intensity is higher than the current yield limit in the plastic flow region; the maximum values are observed near
the front. As a result, under active loading, the stress intensity averaged over the volume continues to increase. As
the plastic strain region is expanded, the stress intensity in the elastic region decreases: the Luders band front is a
constant source of unloading waves, and stress relaxation occurs in the region ahead of the front. In the averaged
flow curve (curve 1 in Fig. 4b), a portion appears on which the values of 〈σ〉 decrease. These processes of initiation
and initial propagation of the localized plastic deformation front determine the formation of a yield tooth at the
macrolevel (see Fig. 4).

During further loading, the stress relaxation in the elastic region (see Fig. 6) slows down. Simultaneously,
the strain hardening in the expanding plastic flow region makes an increasingly greater contribution to the volume
averaged stress. Therefore, an yield plateau appears in the “macroscopic” flow curve, which is characterized by a
slow variation in the current resistance to deformation (see Fig. 4). In this stage, the relative elongation of the
sample occur primarily by plastic deformation of the zone located behind the Luders band front.

Thus, the comparison of the experimental and calculation results shows that they are in good agreement.
This indicates that the model proposed here is adequate for the examined range of strain rates and temperatures.

Conclusions. Plasticity models were considered that describe the rate and temperature sensitivities and
take into account the possibility of inhomogeneous deformation during propagation of Luders bands. These phe-
nomenological models are physically justified, take into account the collective contribution of dislocation mechanisms
and describe the initiation and propagation of localized deformation bands. Calculations were performed of the
elastoplastic deformation of steel samples under compression over a wide range of temperatures and strain rates:
T0 = 77–600 K and ε̇ = 0.1–104 sec−1. It was shown that the introduction of the fraction of mobile dislocations and
modeling Luders band propagation provides a more accurate description of the current resistance to deformation
at ε < 0.1 and the formation of an yield tooth and plateau, in accordance with available experimental data.

This work was supported by the Russian Foundation for Basic Research (Grant No. 06-03-00592).

REFERENCES

1. M.L. Wilkins, “Calculation of elastoplastic flows,” in: B. Alder, S. Fernbuch, and M. Retenberg (eds.), Methods
in Computational Physics, Academic Press (1964).

2. R. Richtmyer and K. Morton, Difference Methods for Initial-Value Problems, John Wiley and Sons, New York–
London–Sidney (1967).

3. O. I. Terebushko, Fundamentals of the Theory of Elasticity and Plasticity [in Russian], Nauka, Moscow (1984).
4. J.J. Gilman “Progress in the microdynamical theory of plasticity,” in: Proc. 5th National Congress of Applied

Mechanics, ASME, New York (1966).

749



5. J. M. Kelly and P. P. Gillis, “Continuum descriptions of dislocations under stress reversals,” J. Appl. Phys.,
45, No. 3, 1091–1096 (1974).

6. L. E. Popov, V. S. Kobytev, and T. A. Kovalevskaya, Plastic Deformation of Alloys [in Russian], Metallurgiya,
Moscow (1984).

7. S. Nemat-Nasser and W. Guo, “Thermomechanical response of HSLA-65 steel plates: Experiment and model-
ing,” Mech. Mat., 37, 379–405 (2005).

8. A. Molinari and G. Ravichandran, “Constitutive modeling of high-strain-rate strain in metals based on the
evolution of an effective microstructural length,” Mech. Mat., 37, 737–752 (2005).

9. F. H. Abed and G. Z. Voyiadjis, “Plastic strain modeling of AL-6XN stainless steel at low and high strain rates
and temperatures using a combination of bcc and fcc mechanisms of metals,” Int. J. Plast., 21, 1618–1639
(2005).

10. W. Guo and S. Nemat-Nasser, “Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and
temperatures,” Mech. Mat, 38, 1090–1103 (2006).

11. P. V. Makarov, “Approach of physical mezomechanics to modeling deformation and fracture processes,” Fiz.
Mezomekh., 1, No. 1, 61–81 (1998).

12. R. R. Balakhonov, “Modeling flow curves of metals and alloys with the packing defect energy taken into
account,” Fiz. Mezomekh., 1, No. 2, 73–80 (1998).

13. R. Cahn, Physical Metallurgy, Amsterdam (1965).
14. P. V. Makarov, V. A. Romanova, and R. R. Balokhonov, “Modeling inhomogeneous plastic deformation with

the initiation of localized plastic shears at interfaces taken into account,” Fiz. Mezomekh., 4, No. 5, 29–39
(2001).

15. R. R. Balokhonov, V. A. Romanova, S. Schmauder, and P. V. Makarov, “Simulation of meso-macro dynamic
behavior using steel as an example,” Comput. Mat. Sci., 28, 505–511 (2003).

16. S. V. Panin, V. G. Durakov, and G. A. Pribytkov, “Mesomechanics of plastic deformation and fracture of
low-carbon steel with a high-strength deformable coating,” Fiz. Mezomekh., 1, No. 2, 51–58 (1998).

750



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
    /RUS ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


